Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of OBD stageII Misfire Detection System for Small Motorcycles

2020-01-24
2019-32-0511
In recent years, the shift to Fuel Injection (FI) system for motorcycles has been accelerated in response to the enhancement of exhaust emission regulations and the improvement of fuel efficiency for global environmental protection. In addition, On Board Diagnostics (OBD) was introduced to inform users of vehicle abnormalities and failures and prevent from emission failure in the market. OBD stageII requires enlargement of requirements and threshold detection. Seven items are presented in the EU5, Bharat Stage 6 (BS6). The misfire detection in small motorcycles has several problems. First, for the small motorcycle, a single-cylinder engine is the main and its combustion behavior cannot be compared with other cylinders. Consequently, it is difficult to detect misfire. For misfire detection, we focused on the difference in crank angular velocity during combustion stroke between normal combustion and misfire.
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
Technical Paper

Development of Power Control Unit for Compact-Class Vehicle

2020-04-14
2020-01-0456
Toyota Motor has developed a new compact class hybrid vehicle (HV). This vehicle incorporates a new hybrid system to improve fuel efficiency. For this system, a new power control unit (PCU) has been developed that is downsizing, lightweight, and high efficiency. It is also important to have a highly adaptable function that can be applied to various car models. This paper describes the development of PCUs that play an important role in new systems.
Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Journal Article

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

2008-06-23
2008-01-1599
A computational and experimental study has been carried out to assess the high load efficiency and emissions potential of a combustion system designed to operate on low octane gasoline (or naphtha). The “naphtha engine” concept utilizes spark ignition at low load, HCCI at intermediate load, and compression ignition at high load; this paper focuses on high load (compression ignition) operation. Experiments were carried out in a single cylinder diesel engine with compression ratio of 16 and a common rail injector/fuel delivery system. Three fuels were examined: a light naphtha (RON∼59, CN∼34), heavy naphtha (RON∼66, CN∼31), and heavy naphtha additized with cetane improver (CN∼40). With single fuel injection near top dead center (TDC) (diesel-like combustion), excessive combustion noise is generated as the load increases. This noise limits the maximum power, in agreement with the CFD predictions. The noise-limited maximum power increases somewhat with the use of single pilot injection.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Journal Article

Development of Electric Power Control using the Capacitance Characteristics of the Fuel Cell

2011-04-12
2011-01-1346
Cold weather operation has been a major issue for fuel cell vehicles (FCV). In order to counteract this effect on FCV operation, an approach for rapid warm-up operation based on : concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply, was adopted in a running fuel cell hybrid vehicle. In order to adjust the output power response of the fuel cell to the target power of the vehicle, -the inherent capacitance characteristics of the fuel cell were measured- based on the oxidation-reduction reaction and an electric double-layer capacitor, and an equivalent electric circuit model of a fuel cell with the capacitance was constructed. This equivalent electric circuit model was used to develop a power control algorithm to manage absorption of the surplus power, or deviation, to the capacitance.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Combustion Improvement of Diesel Engine by Alcohol Addition - Investigation of Port Injection Method and Blended Fuel Method

2011-04-12
2011-01-0336
Alcohol fuels that can be produced from cellulose continue to become more widely used in gasoline engines. This research investigated the application of alcohol to diesel engines with the aims of improving the combustion of diesel engines and of utilizing alternative fuels. Two methods were compared, a method in which alcohol is injected into the air intake system and a method in which alcohol is blended in advance into the diesel fuel. Alcohol is an oxygenated fuel and so the amount of soot that is emitted is small. Furthermore, blended fuels have characteristics that help promote mixture formation, which can be expected to reduce the amount of soot even more, such as a low cetane number, low viscosity, low surface tension, and a low boiling point. Ethanol has a strong moisture-absorption attribute and separates easily when mixed with diesel fuel. Therefore, 1-butanol was used since it possesses a strong hydrophobic attribute and does not separate easily.
Journal Article

Development of Test Method to Evaluate Aggressiveness Focusing on Stiffness and Interaction: Part 2

2011-04-12
2011-01-0547
Test methods to evaluate vehicle compatibility are being studied worldwide. Compatibility performance is central in securing mutual protection in collisions between large and small vehicles. To consider compatibility performance, good structural interaction and stiffness matching are important. A test method using a novel moving deformable barrier (MDB) was developed to evaluate compatibility performance that includes consideration of both structural interaction and stiffness matching. This new barrier has the following features to represent an offset vehicle-to-vehicle collision with a compact car. The barrier width is divided at the lower rail position of the compact car, and the layer that simulates the characteristics of vehicle sections toward the interior is harder than the outward layer. This varying stiffness of the MDB helps simulate the horizontal interaction performance that occurs in real-world crashes.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

2012-04-16
2012-01-1230
Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Journal Article

Development of Ratio Control System for Toyota's New Continuously Variable Transmission

2013-04-08
2013-01-0367
Toyota has developed a new belt-type continuously variable transmission (CVT) for 1.5-liter compact vehicles. To improve both driveability and fuel economy over previous CVTs, pressure management was adopted as the shift control method. The new shift control system was designed using a model-based control method which uses a two-degree-of-freedom system composed of feedback and feedforward controls. Smooth shifting in all the target shift speed regions was realized by combining a feedback loop that considers the output limit of the pulley thrust into the feedforward controller. Furthermore, shift response was improved while maintaining or even improving stability. This paper describes the details of this shift control system.
Journal Article

Development of Variable Valve Timing System Controlled by Electric Motor

2008-04-14
2008-01-1358
To meet the requirements for lower fuel consumption and emissions as well as higher performances, a “Variable Valve Timing - intelligent by Electric motor (VVT-iE)” system has been newly developed. The system has been firstly adopted to the intake valve train of the Toyota's new 4.6 and 5.0 litter V8 SI engine series. The VVT-iE is composed of a cam phasing mechanism connected to the intake camshaft and brushless motor integrated with its intelligent driver. The motor-actuated system is completely free from operating limitation caused from hydraulic conditions. This enjoys an advantage for reducing cold HC. The system also presents further reduction in fuel consumption.
X